GWP of Gross-Pitaevskii Equation on R4


Last week, I had a chance to visit Edinburgh in part to serve as the external examiner on the PhD Thesis (papers) of Tim Candy. Tim is now Dr. Timothy Candy and has an exciting research program to develop as a postdoc at Imperial.

It turned out I had lucky timing since my visit overlapped with a visit by Oana Pocovnicu. I had a chance to hear her speak about her recent work on the Gross-Pitaevskii equation. I took some notes during Oana’s talk and they appear below.

Oana Pocovnicu

(joint work with Rowan Killip, Tadahiro Oh, and Monica Visan)

Edinburgh talk. 2012-05-21

GP

$$ i \partial_t u + \Delta u = (|u|^2 - 1)u, u(0) = u_0 $$

The modulus will tend to 1 as $ |x| \rightarrow 1$.

Literature

Remark: energy critical in $R^4$.
  • Gerard 2006 considered the energy space:
$$ E
{GP} = [ u = \alpha + v: |\alpha | =1, v \in \dot{H}^1, |v|^2 + 2 \Re (\overline{\alpha}v) \in L^2 (R^d)]. $$

Finite energy data do not have winding at spatial infinity. Therefore, to treat the finite energy case, it suffices to reduce the study to the setting where $u = 1 + v$ and $v$ satisfies…. She reduces the study to finite energy data so the set up excludes vortices right away.

Theorem (K-O-P-V): GP is GWP in the energy space $E_{GP} (R^4)$.

Two ingredients:

Scaling Invariance Strichartz Estimates Energy Critical NLS Main Results on defocusing energy-critical NLS Goal: prove existence of a global solution with control on the spacetime $L^6$. Cubic NLS on $R^4$ (Visan)

(Original proof due to Ryckman-Visan but Visan recently simplified that following some ideas of Dodson.)

These are excluded using the long-time Strichartz estimates in the spirit of Dodson. The quasisoliton case is excluded using Morawetz.

Perturbation theory

Recalls the perturbation lemma from CKSTT, adapted to this problem.

She nicely describes the reduction to proving a local result on a time interval controlled by the energy. Once we have this type of local theory, we essentially convert the critical problem into one that behaves like the subcritical problem so GWP will follow.

Remarks on Proof

Subcritical quadratic terms in the Duhamel-Strichartz analysis on local intervals have a time factor. If this time factor is small enough, these subcritical terms can be absorbed. Oh, now I understand! The point here is that GP can be viewed as the energy-critical NLS plus some quadratic terms which don’t destroy energy conservation. This perspective guides the KOPV analysis. They show that the GP equation can be treated as a perturbation off the dilation invariant energy critical case.

Cubic-Quintic NLS with non-vanishing BC on $R^3$

They write $u=1+v$ and observe that $v$ satisfies energy critical NLS with subcritical lower order terms. The Hamiltonian is not sign definite so does not provide coercive control over the kinetic energy term. This is compensated for by using a lower order term $M(v)$, the $L^2$ norm of the real part of $v$. This quantity is not conserved. They show that it satisfies a Gronwall type estimate and that turns out to suffice.

Scattering for the GP equation in the case of large data

Our goal is to fill in the gap. But, this problem does not seem too easy to attack, so we tried to apply these ideas on a simpler problem.

Killip-Oh-Pocovnicu-Visan

For a Cubic-Quintic NLS with zero boundary conditions (which has conserved mass and energy and has soliton solutions) the are working to show that if $v_0 \in H^1 (R^3)$ then scattering holds true if the mass is smaller than the mass of any soliton OR if it has positive energy, smaller than the enrgy of any solution.

(Final statement is a work in progress.)