Edinburgh Meeting Notes 3

Galina Perelman: 2 soliton collision in NLS

i_tψ=ψxx+F(|ψ|2)ψ, xR
where F(ξ)=2ξ+O(ξ2), ξ0.

This family of equations has solitary wave solutions eiθ(x,t)ϕ(xb(t),E)

where θ(x,t)=ωt+γ+vx2, b(t)=vt+c (all reall parameters). The profile ϕ is the associated ground state, which is C2, decays exponentially, is even, …

If I set ϵ2=E and write ϕ(y,ϵ2)=ϵˆϕ(ϵ,ϵ). We have then that ˆϕ(z,ϵ)=ϕ0(z)+O(ϵ2) where ϕ0 is the standard soliton for cubic NLS. A calculation shows that |ϕ(,ϵ2)|H1=O(ϵ1/2).

Let’s collect the parameters σ=(β,E,b,v)R4.

The question I’d like to address:

Question: As t, suppose that ψ(t)=w(,σ0(t))+w(,σ1(t))+oH1(1). Because of the galilean invariance we can arrange so that σ0 does not move and we assume that v1>0. So, we can arrange this data to have completely decoupled solitons as t. The question is then to understand the soliton collision and also what happens afterwards.

Perturbative regime: ϵ2=E11,E01,v11.

Collision Scenario:

  1. w(,σ0(t)) is ‘preserved’.
  2. w(,σ1(t)) splits into two outgoing waves of the cubic NLS. The splitting is controlled by the linearized operator associated to the large soliton wσ0.
Collision: |t|ϵ1δ, δ>0. pre-interaction: tleqϵ1δ post-interaction: tleqϵ1δ

She draws a picutre:

Long wide soliton to the left of a big soliton at the origin before the collision. After the collision the small soliton splits into two waves, one moving left and one moving right. The big soliton at the origin is drawn not centered at the origin.

s=s(v12),r=r(v12) where s(k),r(k) are the translation and reflection coefficients of the linearized operator corresponding to w(,σ0(t)). Here we have |s|2(k)+|r|2(k)=1. The only trace of nonlinearity appears in the phase.

This phenomena has been observed before by Holmer-Mazuola-Zworski and earlier by physicists. H-M-Z conisdered the cubic NLS with an external delta potential. For small incoming solitons, they have observed the small soliton splitting caused by the Dirac function potential.

Hypotheses:

(H0): FC,F(ξ)=2ξ+O(ξ2),ξ0. F(ξ)Cξq,C>0,q<2,ξ1. (GWP in H1) ! ground state.

Linearization around w(x,σ(t))=eiθϕ(xb(t),E). We substitute ψ=w+f and expand to obtain the following equation for f:

ift=L(E)f.

Here f is a (column) vector (f,f). L(E)=(2y+E)σ3+V(E).

Here σ3 is the Pauli matrix and V is a certain matrix involving V1=F(ϕ2)+F(ϕ2)ϕ2 and V2=F(ϕ2)ϕ2.

She draws a spectral plane. Essential spectrum along real line in region |x|>E and some eigenvalues drawn as x’s inside the gap and one above and below the real line on the imaginary axis. 0 is an eigenvalue. We have two explicit eigenfunctions ξ0 and ξ1.

M(E) is the generalzied null space of L(E). We have the following equivalence:

σ(L(E))R,dimM(E)=4ddE|ϕ(E)|22>0.

These conditions imply the orbital stability of Φ.

Lf=λf, λE,λ=E+k2, kR. If k2+Iσp(L(E)) then  ! f(x,k)=s(k)eikx(1,0)t+O(eγx) as x+, γ>0 and f(x,k)=eikx(1,0)t+r(k)eikx(1,0)t+O(eγx),x.

w(x,σ,t), j=0,1 normalized as before.

(H1): $$\frac{d}{dE} | \phi(E) |2^2 |{E=E_0} > 0$$

(H2): ϵ2=E1 sufficiently small

(H3): M(E+v214)σp(L(E0)) (Nobody knows how to prove no embedded eignevalues.)

Proposition:  ! ψC(R,H1) such that ….

Theorem: For ϵ1δtδϵ2|lnϵ|

ψ(t)=w(,σ(t))+ψ+(t)+ψ(t)+h(t)

  1. σ(t)=(β(t),E0,b(t),v0), V0=ϵκ where κ is an explicit constant and |β(t)β0(t)|,|b(t)v0t|Cϵ2t.
  2. Ψ±(x,t)=.acktoofasttotypeΨ±$
is expressed as an explicit phase times a function S± which solves cubic NLS emerging from data built using thre reflection, transmission coefficients and ϕ0(y). 3. error estimates in terms of ϵ.

Edriss Titi: Loss of smoothness in 3d Euler Equations

(joint work with Claude Bardos)

Overview:

  1. Background
    • Euler
    • Classical
    • Nonuniqueness: De Lellis - Sh…
  2. Shear flow
    • DiPerna Majda example: weak limit of Euler solutions whose limit is not a solution
    • Illposedness of Euler in C^{0,\alpha}
  3. Vortex sheets induced by 3d shear flows
    • Examples
    • Differences between 2d and 3d Kelvin-Helmholtz problems
    • Comments on numerics

Euler equations

Euler equations on the 3-torus. ω is the vorticity. Recast using Biot-Savart.

Vorticity stretching term distinguishes 2d and 3d.

Classical Wellposedness:

  • global existence and uniquenes for initial data ω0L. This result is due to Yudovich (1963). Some extension….
  • For data in C1,α, Euler equations are short time well-posed and the solution conserves energy. [Lictenstein (1925)]
  • The same result holds the context of Sobolev spaces Hs, s>52. (Basically same result in more modern spaces)
Question: Does there exist a regular solution (say in C1,α) of the 3d Euler equation that becomes singular in a finite time (blows up problem)? This is in osome sense as difficult as the millenium problem. There are different opinions….

“I spoke with Necas about this…near end of his life…on Wendesday’s he thinks it blows up and on Thursdays he thinks no…so he has bad dreams about it…”

DeLellis-Szekelyhidi: There exists a set of initial data u0L2(Ω) (not explicitly constructed, Baire argument) for which the Cauchy problem has, for the same inital data, an infinite family of weak solutiosn of the 3d Euler equations: a residual set in the space C(R;L2weak(Ω)).

These are also in L so they have finite energy. (Built on Shnirelman and others….). This is a breakthrough…but it is not so physical. Maybe a selection mechanism….for NS we don’t have such a result. Leray solutions are not known to be unique. Any result like this for NS would be extremely important….connect it with turbulence. The lack of uniqueness, according to Leray, relates to turbulence.

Shear flows:

u(x,t)=(u1(x2),0,u3(x1tu1(x2))).

For u1,u3C1, the above shear flow is a classical solution of the Euler equations with pressure p=0. Yudovich used these to show the existence of solutions with exponentially growing high regularity norms.

This example due to DiPerna-Majda (1987).

Theorem (DiPerna-Lions): Norm explosion in W1,p for Euler, for any p1.

Idea of the proof: x2u3(x1tu1(x2))=

Theorem: The shear flow is a weak solution of the Euler equations in the sense of distribtuions in R3, provided u1,u3L2loc(R3). On the periodic box, we can do same thing and in this case we have finite energy.

Why do I stress the finite energy? This relates to the Onsager conjecture.

Theorem [Ill-posedness of the Euler equations in C0,α]:

The shear flow with C1,α components u1,u3. However, for u1,u3C0,α then the above shear flow is always in C0,α2 which is a much larger space. We instantly lose the C0,α. There exists a shear flow which starts in C0,α which, at any positive time, is not in C0,β for any β>α2.

This family of solutions is compactly supported in space and time.

Other spaces and optimal spaces:

There are many layers of spaces between these H"older spaes. He writes a tower of inclusions between C1,αC0,α. In fact, there is well-posedness [Pak and Park] vs. failure of wp in B1,infty (Zygmund class) and failure in certain Triebel-Lizorkin spaces.

Weak limit of oscillating initial data:

DiPerna-Majda example…

Shear flow with vorticity interface. Vortex sheet flows are irrotational off an interface. To build such solutions he takes u1,u3 as (parametrized) Heaviside functions.

…wow…this talk is coming pretty fast, slides are changing…I stop typing and start to just try to keep up.

Numerical investigation of blowup for the 3d Euler

John Gibbon gave a talk a few years ago on the history of these investigations. Tom Hou and Bob Kerr are competing and disagreeing in this direction….is there a singularity…maybe not?

Question: Does the soluton of the following PDE blow up? tuνΔu=|u|4?

What would you try numerically to determine if it blows up or not? You can even collapse it to the corresponding 1d problem?

Postlude Discussion: Yudovich explored the DiPerna-Lions shear flow examples to see that norms measuring high regularity can grow exponentially in time. Chemin has studied the vortex patch and shown some measures of regularity of the boundary of the patch grow doubly exponentially fast. It was not explicitly clear to me yet how to relate Chemin’s rough patch boundary example to the growth of norms measuring regularity of the solution. Also, Chemin’s examples emerge from non-smooth initial data. I remain interested in the question: Does there exist nice data for 2D Euler which evolves with high regularity norms growing doubly exponentially?


Benoit Grébert: Hamiltonian Interpolation for Approximation of PDEs.

(joint work [Grébert-Faou] with Erwan Faou)

Aim:

Take a PDE with solution u. Consider a numerical approximation un built with a symplectic integrator which approximates u(nh). We build a hamiltonian Hh such that un=ΦnhHh(u0)+very small.

I am concerned with the long time behavior of the numerical trajectory.

My concern right now is not in estimating the quality of the approximation. Instead, I want to understand the numerical flow.

Outline:

  1. Finite dimensional Context (ODE)
  2. PDE Context
  3. Ideas of the proof (time permitting)

Finite Dimensional Context

We go back to Moser’s theorem. A discrete symplectic map close to the identity can be approximated by a Hamiltonian flow. Consider an analytic symplectic map R2n(p,q)Ψ(p,q)R2n
with Ψ=Id+O(ϵ). Then  Hϵ such that Ψ=ΦϵHϵ+O(e1cϵ).
([Moser 1968], [Benettin-Giorgilli 1994])

Numerical Context: Suppose I have a Hamiltonian ODE system (˙p,˙q)=XH(p,q)

and an associated numerical discrete-time-step symplectic integrator (pn,qn)=Ψnh(p0,q0).
We then have that Ψh=ΦHh+O(e1/ch). We obtain that Hh(pn,qn)=Hh(p0,q0)+ne1/ch. So, we are observing that the modified energy is essentially conserved for exponentially long times.

Backward Error Analysis

PDE Context

H=H0+P
Here we imagine H0 is the linear part and P is the nonlinear part. As an example, consider the cubic NLS on Td. We can treat other equations as well. Let’s recall the Hamiltonian formalism in the Fourier variables:

Expand u to get u=ξjeijx, u=ηjeijx.

We can then write, for each jZd, ˙ξ=iHη
˙η=iHξ.
For the cubic NLS case, we obtain H=|j|2ξjηj+ξk1ξk2ηl1ηl2
where is the sum over all the parameters subject to the constraint k1+k2=l1+l2.

The problem we face here is that the linear part is unbounded, and we have infinitely many dimensions as first obstructions in passing from the ODE to the PDE context.

Splitting Method: ΦP+H0ΦhpΦhH0=?ΦhHh.

First naive idea: Use the Baker-Campbell-Haussdorf formula. We can then expand as a Lie series… to write ΦhpΦhH0=ehLpehLH0=ehHh

with Hh=H0+P+h2P,H0+.$

To proceed, we will need conditions small=hNC(N,,|numsol|NH) NOT FAIR! So we need to work harder.

First Idea: Replace hH0 by A0 by cutting off to low frequencies. We can splt and impose the CFL condition. Midpoint + split. He considers different cutoffs.

We then consider ΦhpΦ1A0.

Second Idea: Use the Wiener Algebra. Space of functions with Fourier coefficients in l1.


Theorem (Grébert-Faou): For the approximation scheme ΦhpΦ1A0 there exists a (polynomial) modified energy Hh such that

|ΦhpΦ1A0(ξ,η)ΦhHh(ξ,η)|l1hN+1(cN)N

uniformly for |(ξ,η)|l1M.

So, assuming that the numerical trajectory is bounded in l1 (as opposed to the stronger claim that it is bounded in Hk for k large) then Hh(un)=Hh(u0)+CnhN+1.


Of course, I have to explain: what is N? This is related to a regularization condition. We know that N=r2r02 where r0 is the degree of P (so 4 for cubic NLS). The parameter r is determined by the condition:  j=1,,r and for any j-tuple of integers (k1,,kj)Zd, we have |λk1±λk2±±λkj|2π.

CFL: |λk|C.

He describes some examples where N=3,4 and N=7.

For cubic NLS, we end up obtaining Hh=1hA0+Z1+hZ2+

where Z1=ei(λk1±λk2±±λkj)ei(λk1±λk2±±λkj)1.
You can now see how the zero divisor issue emerges and is resolved.


Related